

Krypton-85 Removal for LZ Using Gas Charcoal Chromatography

Christina Ignarra

LIDINE

September 22, 2017

Background Mitigation in Xe

Remaining Backgrounds in The Bulk Xenon

(Luckily these are ER backgrounds...)

- Solar neutrinos
 - Irreducible
 - ~1 event per day in LZ

- Radon
 - Prevent during construction
 - Internal mitigation
 - Goal: 0.67 mBq

- Krypton (this talk)
 - Atmospheric gas: present in commercial
 Xenon at the ~10,000 ppt level
 - Goal: 0.015 ppt (corresponds to 1/10 of solar neutrino background)
 - Removed in advance

Kr-85

Kr-85 is an ER-like background (beta emitter)

~10,000 ppt
$$\rightarrow$$
 3 ppt \rightarrow 0.015 ppt (0.300 ppt)
Commercial Xe LZ Goal (LZ requirement)

- 0.015 ppt corresponds to only a shotglass of air in LZ's 10 tons of xenon
- Remove via gas charcoal chromatography

Gas Charcoal Chromatography

- Remove Kr via gas charcoal chromatography
 - Helium carrier gas
- Van der Waals bond between between noble gas and activated charcoal
 - Polarized atom attracted to it's image charge in conductive charcoal surface
 - Xenon: larger atom, more electrons, more polarizable
 - Faster flow rate of Kr through the charcoal

Kr Removal R&D System at SLAC

- Upgraded version of LUX Kr removal system (arxiv:1605.03844)
- Run through Chromatography Loop to trap Kr
- Then switch to Recovery Loop to recover purified xenon into condenser

Chromatography Loop

- Charcoal Column
 - 60 kg activated charcoal
- Circulation Pump
 - KNF Diaphragm pump
- Kr Trap (in LN)
 - U-tube with activated charcoal
 - Only Helium can pass
 - Filters out Kr and any trace air or oil

Recovery Loop

- Condenser
 - Freezes Xe on LN-cooled surfaces
 - Recover after every ~5 runs.
- ACP Pump
 - Recovery circulation pump
 - "Dry" roots blower
- Sniffer bottle (in LN)
 - Take small "sniffs" of He/Xe mixture
 - allows us to assay each run

Residual Gas Analyzer (RGA) & Cocktail runs

- RGA located after charcoal column,
 - Trigger switch to recovery once xenon is detected
 - Not sensitive to ppb level Kr
- Add Kr to Xenon to map chromatography

Distillation Assay System

- Cold-trap assisted RGA (arXiv:1103.2714)
- Developed by collaborators at UMD
- Sensitivity at the 0.005 parts per trillion level
- Will be moved to LZ for online purity monitoring

Results of Kr R&D

Commercial Xe: 1,000-100,000 ppt

LUX: 3 ppt

LZ Requirement: 0.3 ppt

LZ Goal: 0.015 ppt

R&D result 0.060 ppt => 1/2 solar neutrino background

- Main challenges were cross-contamination and trace impurities in UHP He
- Developed diagnostic tools such as a clean-xenon-backflow to systematically check isolated regions and components of the system
- Left with one more kr source in system which we could not fix
 - Virtual leak' from the gearbox of our recovery pump into the process space
 - Production system will use a different pump design without this failure mode!

Kr Removal Production System

- Process all xenon at SLAC
- ~1/2 of the LZ Xenon has already arrived and been assayed
- Scale up batch size by factor of 8 and overall processing rate by a factor of 20
 - 2 charcoal columns for continuous running

Conclusion

- Surpassed our Kr-85 requirement of 0.3 ppt by a factor of 5
- Expect to reach our ultimate goal of 0.015 ppt with the production system!
- Developed powerful diagnostic tools for use in production system
- Starting production system procurements, construct next year

Backup

Kr Removal R&D System at SLAC

15

Lessons learned/Achievements

- Lowest concentration achieved was 0.06 ppt, a factor of 5 lower than our requirement
 - Not quite at 0.015 ppt, but likely to reach this in production system
- Discovered and removed sources of cross-contamination from the system
- Developed a method for assaying helium and learned that our UHP helium was not sufficient to clean the kr trap

Hit limiting factor of R&D system:
 Recovery circulation pump had communication between gearbox space and process space, Kr outgassing from oil

All of this influences production system design!

Diagnostics: Clean Xenon Backflow

Can make small amounts of <5 ppq Xenon with assay system

- Backflow small amount of xenon into test space
- Can diagnose contamination sources
 - led us to remove certain valves and filters from the recovery line
 - Led us to determine the limiting factor of the system

Distillation Assay System

Distillation Assay System Linearity

- Create stock calibration xenon with known Kr content
- Dilute with clean Xenon to map linearity
- Tune impedances of system and cold trap parameters to optimize signal and linearity

LZ System: scaling from LUX

Scaling	LUX	LZ	
Column / slug size	2 kg Xe slug in 60 kg charcoal	16 kg Xe slug in 500 kg charcoal	Saturation: fix M
Chromatograph y	120 min: 100 LPM 50 SLPM @ 0.5 bar	120 min: 1000 LPM 500 SLPM @ 0.5 bar up to 2000 SLPM @ 2 bar	Transit time ~ M flow); higher pressure reduces diffusion
Recovery	180 min: 1500 LPM 15 SLPM He @ 10 mbar 120 SLPM Xe at peak	120 min: 25000 LPM 250 SLPM He @ 10 mbar	Match chromatography time; conservative scaling since 1.5 faster × 8 M volume flow, or 18000 LPM
Processing rate	2 kg / 5 hours 10 kg/day 50 kg/week, incl. storage	16 kg / 2 hrs 192 kg/day 20T / 120 days (85% uptime)	Continuous processing in LZ - no downtime for storage; 2 passes of 10 T

Background and Signal Calibrations

Background Events

- Electron Recoil (ER)
- Higher charge-to-light ratio
- Calibrate using high-statistics tritium dataset (LUX)

Signal Events (WIMP-like)

- Nuclear Recoils (NR)
- Lower charge-to-light ratio
- Calibrate using D-D neutrons (LUX)
 - In-situ nuclear recoil (NR) calibration

(Light)

LZ Expected Signal from a 40 GeV WIMP with Expected Backgrounds

Profile Likelihood Ratio (PLR)

- Compares data to background distribution and signal distributions for different mass models
- Function of S1, S2, radius, and depth
- Fit for systematic parameters

